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Nowadays, great amount of data is being created by several sources from aca-

demic, scientific, business and industrial activities. Such data intrinsically con-

tains meaningful information allowing for developing techniques, and have 

scientific validity to explore the information thereof. In this connection, the aim 

of artificial intelligence (AI) is getting new knowledge to make decisions proper-

ly. AI has taken an important place in scientific and technology development 

communities, and recently develops computer-based processing devices for 

modern machines. Under the premise, the premise that the feedback provided by 

human reasoning -which is holistic, flexible and parallel- may enhance the data 

analysis, the need for the integration of natural and artificial intelligence has 

emerged. Such an integration makes the process of knowledge discovery more 

effective, providing the ability to easily find hidden trends and patterns belong-

ing to the database predictive model. As well, allowing for new observations and 

considerations from beforehand known data by using both data analysis meth-

ods and knowledge and skills from human reasoning. In this work, we review 

main basics and recent works on artificial and natural intelligence integration 

in order to introduce users and researchers on this emergent field. As well, key 

aspects to conceptually compare them are provided.  

 

   

1. Introduction 

At present, the electronic and computer advances, such as sensors, satellites, GPS, technology web, cloud compu-

ting and social networking (Liu, 2014),  (J. R. F. Díaz, 2011), among others, have contributed to the phenomenon of 

the generation of large volumes of data (Data Mountains) (Tufféry, 2011). These data mountains usually emerge and 

grow at a rapid pace, with nature and complex structure [4], and reach exorbitant dimensions, exceeding the capacity 

of conventional tools to capture, manage and process the data in a reasonable time. Recently, to encompass all aspects 

of this phenomenon in a unique concept, it has coined the term Big Data (Gantz & Reinsel, 2012). Additionally, the 

task of presenting and/or represent data in an understandable, intuitive and dynamic way is not a trivial task, since 

such data are often scattered, and come from various sources. Furthermore, when combined, data can become a new 

dataset, which may have an inconsistent and unpredictable structure (Dai & Hu, 2014).  
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Another aspect to take into account is the high number of variables representing data, here named dimensionality. 

For instance, complex systems (Ball, 2012) (i.e., social, biological physical and chemical systems (Turk-Browne, 

2013) (Kutz, 2013)) generate data that normally have immediate use but have been stored for long time. Therefore, 

such data may present chaotic behavior (due to the nature of complex systems) and most of them have not been ex-

plored as a base to generate new knowledge (Ortigosa, Carro, & Quiroga, 2014). That said, one can say that available 

tools should evolve with the growth of data. Then, novel emergent techniques (Yongqing Wang & Li, 2014) (Diet-

terich, 1997) integrating the potential of computing resources (such as data mining (Butz et al., 2009)) and the quali-

ties of human analysis and interpretation (such as visual analytics (Kim & Lee, 2014) (Theron & Fontanillo, 2015)). 

The synergetic integrations of artificial and natural intelligence represent suitable approaches to discover knowledge 

by devising a holistic view of the problem (Timaran, 2005) (Bertini & Lalanne, 2009). In this sense, interactive in-

formation visualization is a key tool that allows for access to and performing mental operations on large volumes of 

data, turning then the machine on a co-participant in the process of discovering patterns and unveiling of the emer-

gent properties that are not readily anticipated a priori. The perception of a pattern can often be the basis of a new 

vision, so the data visualization (DV) facilitates understanding of the characteristics of both large scale and small 

scale of the data. A DV stage is often essential for designing a data analysis system when significant assumptions 

about the data need to made a priori (Bertini & Lalanne, 2009). Indeed, despite the existence of modern and powerful 

data processing tools, only a few can be used without a priori knowledge about the data (Y. Wang & Li, 2014), which 

is crucial to choose the best models, methods and algorithms to be tested on data. In this regard, DV can certainly 

help to build an initial idea about the structure of the data (outliers, clusters, local structures, etc.). In addition, visual-

izing data results useful for the users, especially for those who are not expert, may have visuals that allow intuitively 

analyze the results taking into account human perception system (Gibson, 2014). 

In this paper, we describe two approaches for exploring data representing two independent learning forms, which 

use of computer processing and visual analytics that uses parallel thinking human being, namely the integration of 

artificial intelligence with the natural intelligence. Such an integration can be done by a Knowledge-Discovery-in-

databases (KDD) process. This work briefly reviews approaches for artificial and natural intelligence integration, as 

well as presents an overview on data mining and information visualization. 

The remaining of this paper is organized as follows: Section 2 presents a brief overview on KDD and data mining. 

Section 3 refers to information visualization based on human perception. In section 4, the approaches for natural and 

artificial intelligence integration are described. Section 5 outlines the final remarks and conclusions. 

2. Data processing - On the side of the machine 

The machine learning (ML) essentially consists in synthesizing rules from data using statistical and mathematical 

methods(Agrawal, Srikant, & others, 1994) (Mitchell, 1997). Such methods are used as the basis to develop tech-

niques aimed at extracting information and generating knowledge. In this connection, all these techniques are encom-

passed in the data mining (DM) (Fayyad, Piatetsky-Shapiro, Smyth, & Uthurusamy, 1996). The overall goal of DM is 

to “reconstruct a story” from the information contained in the data. Nonetheless, DM researchers has given different 

definitions to the term data mining, such as: "the process of extracting and refining useful knowledge from large 

databases "(Kerber, s. f.), "the process of extracting information previously unknown, valid and actionable from large 

databases for later use in decision making" (Hirji, 1999), and “the exploration and analysis, by automatic and semiau-

tomatic means, large amounts of data in order to discover meaningful patterns and rules". 

2.1. KDD process 

KDD has been defined as an iterative, interactive and non-trivial process for identifying valid, novel, potentially 

useful and understandable patterns to discover knowledge (Fayyad, Piatetsky-Shapiro, & Smyth, 1996). KDD can be 

applied in different domains, for example: Fraud detection (Phua, Lee, Smith, & Gayler, 2012), human and machine 

diagnosis (Huang, Chen, & Lee, 2007), psychological profiling (Mena, 2003), trading trend analysis (Ras, Tsumoto, 
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& Zighed, 2008), whether forecasting, among others. Common tasks in KDD are generation of rules of induction, 

classification, clustering, pattern recognition, predictive modeling (D. H. Peluffo-Ordóñez, Alvarado-Pérez, & Cas-

tro-Ospina, 2015), and variable correlation analysis, among others (Agrawal et al., 1994). In this process, different 

stages are considered. Firstly, the connection to the data set is established that can be strong, weak or moderately 

coupledb(Timarán Pereira, 2011) (Timaran, 2005). Once the connection is established, it is necessary to select the 

data of interest, by excluding data instances being not relevant. Then, a filtering process (also called data cleaning) 

must be applied to the data set for eliminating irrelevant and/or noisy data (i.e. outliers, missing data, erroneous val-

ues) (Alvarez, s. f.). Finally, the KDD core is performed to establish patterns that describe predictable recurring 

events or trends(Brachman, Khabaza, Hill, Kloesgen, & Augustin, 1996) (Chen, Han, & Yu, 1996) (López & Herre-

ro, 2004) (Imielinski & Mannila, 1996) (Matheus, Chan, & Piatetsky-shapiro, 1993). Figure 1 shows graphically the 

stages of the KDD process.   

 
Figure 1: KDD Process. Connection, Selection, Preprocessing, Data Mining, Visualization, Discovery and 

Knowledge 

2.2 DM techniques 

The DM techniques are classified into two groups: Supervised (Weiss & Kulikowski, 1991) and unsupervised 

techniques (Riquelme, Ruiz, & Gilbert, 2006). In supervised learning, often also called directed data mining, the 

variables under investigation can be split into two groups: explanatory variables and one (or more) dependent varia-

bles. The target of the analysis is to specify a relationship between the explanatory variables and the dependent varia-

ble as it is done in regression analysis. To apply directed data mining techniques the values of the dependent variable 

must be known for a sufficiently large part of the data set. Some well-known approaches are decision trees, Bayesian 

classifier, neural networks, and for classification tasks. On the other hand, unsupervised techniques do not require 

performing training stages (no labeled data are needed) and the data processing is exploratory. Clustering and asso-

ciation are some examples of unsupervised approaches. Figure 2 depicts the classification of supervised and unsuper-

vised methods. 
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Figure 2: Classification of DM techniques. 

 

3. Information visualization – On the side of the human 

The human being is intuitive and deductive as well as has a convergent and divergent thought, having then the vir-

tue of interpreting the world possible in a holistic, panoramic, parallel, flexible and contextual way, allowing for a 

quickly integrated sight of problems and taking out general concept for doing mind maps and establishing dynamic 

relationships among objects.  All aforementioned is provided by imagination, creativity and spontaneity being charac-

teristics that make a person able to give different meanings to the same term (i.e. the word love may be mean some-

thing different regarding the point of view) (Peluffo-Ordónez, Alvarado-Pérez, Lee, & Verleysen, 2015). Also, such a 

virtue makes a human being able to interpret different and ambiguous feelings such as irony, moods and sarcasm (N. 

V. Díaz & García, 2002), which cannot be interpreted by machine as feelings. This is due to the data interpretation by 
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a machine that is deterministic. Nevertheless, there exists inherent subjectivism associated with the analyst experi-

ence, which may bias the outcomes when analyzing data. To deal with this drawback, objective processes become 

necessary for supporting the process of decision making (Tufféry, 2011). A human being is rounded by different 

aroma, tastes, smelling, feelings, sounds and colors that are perceived and internalize through senses, who build a 

subjective concept from them. However, visual stimulus are the ones that give the most information to the brain so 

this process makes the sight the widest bandwidth sense, because it permits to perceive a lot of varied information 

from the environment (Pethuru, 2014). Broadly speaking, it means that “a picture is worth a thousand words” so if 

representative, such picture will facilitate human to build a mind map for concepts or problems learning.  

At present, modern technology is making that images tell histories from big data, taking them into a multimedia 

and multidimensional world where human being is able of manipulating and interacting with data to build a complex 

reality representation in a graphic fashion, as well as identifying under-lying patterns and/or models (Cook, Earn-

shaw, & Stasko, 2007). Our world perception has been encoded by different symbols such as: letters, numbers, dia-

grams, general data, etc., which should be intelligible for human beings. Thus, some visualization approaches are 

used that provide a real semiotic ability for human interpretation, so it uses different types of resources such as colors, 

forms, textures and geometrical representations based on psychological phenomena like color interpretation, pre-

attentive process, context and reference interpretation (Keim et al., 2008). There several tools for intelligent visualiza-

tion (Koh, Slingsby, Dykes, & Kam, 2011), providing a semiotic relationship with explored data –by telling the da-

ta’s story in a graphic, suitable and efficient way.  

4. Artificial and natural intelligence integration 

The modern computer and its emergent systems have implicitly generated a scenario where a human being and 

machine competition takes place, in which the latter has gradually increased its involvement into exclusively human 

beings activities. However, a machine might not be seen as a human being replacement since they both have special 

characteristics (as mentioned above) making them essentially different from each other.  In this connection, it is 

worth to underline that under a proper integration of artificial –by machines- and natural –by human beings- intelli-

gence may perform better and more robust processes. This means that an integrated system can be formed so that 

improved outcomes are reached. For instance, computers are deterministic, objective, tireless and untiring, as well as 

have a high processing ability (Alvarado-Pérez & Murillo, s. f.). Meanwhile, human beings have flexible, parallel and 

dynamic thought within a holistic context viewpoint. In this sense, by joining the characteristics from both approach-

es, versatile and suitable systems able to generate solutions benefitting society can be accomplished. Even though the 

two studied approaches are essentially different, they may have similar properties to be exploited to improve the 

system performance. On one hand, computers can be flexible (just like human beings) by adding to them some au-

tonomous learning techniques such as fuzzy logic. On the other hand, human brain is divided into two hemispheres, 

being the right one in charge of creativity and feeling, meanwhile the left one provides the logic (Roselli, 2011), 

which is closer to the way how machines process the information. Indeed, many learning and processing systems for 

computers emulate somehow the brain behavior as it is the case of neural networks (Huang, Tsou, & Lee, 2006). 

By doing an adequate synergetic integration between human beings skills and computer abilities involving the 

best properties from each one, artificial intelligence along with natural intelligence may reach both accurate calcula-

tion ability as well as holistic and flexible learning processes. Then, aimed at providing a robust and proper data 

exploration, an integrated system may discover innovative and useful knowledge in a more efficient way in compari-

son with traditional approaches (Kononenko & Kukar, 2007). Within integration frameworks, Data Mining (DM) 

algorithms are able to exhaustively explore and analyze data by taking advantage of information visualization (IV) 

techniques that facilitates human interpretation. In fact, visualization processes are aimed at providing users with an 

efficient way to interpret data making the DM outcomes more intelligible and facilitating mind map building in a 

graphic way (Torres Ponjuán, 2009) in this way the holistic and flexible human being thought is involved. In this 

sense, automatic learning and DM is on the computer side while the IV on the human interpretation side as explained 

in Figure 3. Integrated systems work iteratively and interactively demanding often a high computational cost as well 

as a strongly collaborative work between analyst and machine(Alonso, Martínez, Pérez, & Valente, 2012). 
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Figure 3: Integrating human beings in machine, through knowledge discovery process 

 

4.1. Ways to integrate Information Visualization and Machine Learning  

Las características ausentes en un método podrían encontrarse en otros, y por tanto, una apropiada integración de 

ellos lograría potenciar sus propiedades y generar una mejor representación de los datos. 

DM and IV are fields that have been independently created and developed, being the former able to process data 

outputting if-then rules and patterns while the latter represents data in an easy-to-interpret fashion without using 

additional algorithm support. By construction, these methods were no intend-ed to interact with each other. Nonethe-

less, approaches to integrate DM and IV have been proposed (Bertini & Lalanne, 2009). Following are described 

approaches to integrate DM and IV, namely: Computer visualization, visually improved data mining. 

4.2. Visualization supported in machine learning.  

The V++ objective is to make a data representation allowing for detecting and drawing patterns through computa-

tionally optimal views. This approach is mainly a visual technique that takes advantage of computer algorithms such 

as those based on DM. Visualization attempts to reveal and visualize the most relevant patterns, that is to say those 

ones being more informative regarding some criteria. Thus, intended to facilitate human interpretation, visualization 

allow for low-dimensional data representation (2 or 3 dimensions). Nonetheless, when dealing with big data, the 

original data space embedding space into a lower dimension space is not a trivial task. For instance, just look at a 2D 

conventional screen, which itself is inherently limited by its available rectangular space. Indeed, the most common 

(being feasible and real) representation relies on a 2D plotting whether n-dimensional data (n >3) or even one-

dimensional data (normally an extra corresponding axis is used, i.e. the axis of ordinal numbers being the simplest 

one). On this regard, available 2D representation must be optimally utilized for visualization purposes, and then an 

intrinsic bi-dimensional space for properly representing of data should be determined. To this end, there are different 

approaches such as: data projection, dimensionality reduction, multidimensional scaling, and data clustering(Diego 

H. Peluffo-Ordóñez, Lee, & Verleysen, 2014). Properly set, visualization approaches along with human interaction 

may reach the best 2D representation according to the user’s needs. In Figure 4, the V++ process is shown. Notice 

that the symbol ++ means that visualization is improved by DM techniques. 
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Figure 4:  V++ Process 

4.3. Machine learning supported in Visualization. 

The core of this type of combination relies on the DM techniques. Mean-while, VI is an additional stage to visual-

ize and validate the DM outcomes. This is done through an interactive interface allowing for not only interpret-ing 

the extracted model by the DM, but also visually verifying, assessing and refining the model outputted by the DM 

techniques. In this way, a clear interaction between analyst and model takes place, which allows a deeper comprehen-

sion of the underlying data information (Aguilar, Guerrero, & Penalvo, 2010). In other words, DM is in charge of 

innovative and useful patterns discovery, while IV only generate a visual representation of them. Figure 5. shows 

graphically the stages of the M++ process. Symbol ++ denotes DM is supported by IV. 

 

 

 

Figure 5. Process in M++ 

4.4. Synergistic cooperation between visualization and machine learning. 

VM techniques involve IV and DM, in which both fields are equally im-portant. In fact, they combine in a syner-

gic way the parallel thought from the human being with the processing capability of computers (Alvarado-Pérez & 

Peluffo-Ordóńez, 2015). Doing so, the best from the machine and human world converge to a meaningful data analy-

sis and interpretation(Kai Puolamäki et al., 2010).  Two types of VM approaches are explained below. 

4.4.1. Integration black box with feedback. 

  In this approach, algorithms are black boxes, that is, the analyst cannot observe the way the DM algorithm inter-

nally works. Nevertheless, user may modify parameters whose effect is automatically reflected in the IV process, 

yielding then an adaptive approach. In other words, VM-IBBF creates a feedback loop be-tween IV and DM reaching 

more meaningful alternatives and models, ac-cording to the user’s criterion.  

4.4.2. Integration white box  

This type of integration requires a strong joint effort between analyst and machine. Hence, every single stage of 

the DM algorithms can be observed so that model building process is easily accessed and modified. So, VM-IMB 

provides better understanding and allows users customize the algorithms. The interactive and iterative process of 

VM-IMB is shown Figure 6. 
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Figure 6. Interactive and Iterative process in the Integration White Box: VM  

 

5. Conclusions and final remarks 

In this work, we present a brief review of the main approaches for artificial and natural intelligence integration. 

Particularly, artificial intelligence is associated with DM (how to computer explore and analyze data). Correspond-

ingly, natural intelligence refers to IV which allows for an intelligible human interpretation. We emphasize the bene-

fit of the field of IV to describe, explore and analyze data in order to discover underling knowledge from data. The 

processes for knowledge extraction and schematic representation of reality by visual models are transversal topics 

very useful in several fields involving data. Nonetheless, such processes performance is strongly dependent on the 

nature of data as well as the right use of the data processing techniques. Given this, the synergic integration of artifi-

cial and natural intelligence represents a good alternative. Indeed, by properly mixing the holistic, flexible and paral-

lel interpretation from human beings and the high computing storing capabilities of machines it is possible to discover 

relevant (even unexpected) new  patterns within big data sets in an effective way. It is important to remark that due to 

the high demand of computational load, integration approaches are often implemented on parallel and distributed 

architectures such as computer clusters and grids, which in turn contribute to significantly improve the performance 

in terms of time processing and accuracy. 
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